AI转型必看|算法工程师的AI启示录

慧聪通信网 2021-07-01 15:06 来源:互联网

【慧聪通信网】如今有些论断说:“AI行业不热了!泡沫终是泡沫?” 但实际上,只有身处AI产业之中的局内人才深知,在经历了理论研究、数据驱动的阶段后,整个行业日渐成熟,进入了产业落地应用阶段。眼下亟需的是从技术到业务的融合,而不仅是技术本身的迭代。

第四次工业革命的驱动力量,这是科技行业对人工智能技术的价值评价。这次技术革命涌现出的新型AI复合型人才,正乘着AI产业化落地应用的风口,在各自的行业披荆斩棘。用AI驱动业务、推动产业升级,就是这些人的时代使命,江湖人称“AI架构师”。

从字面拆解“AI架构师”——AI对应算法技术;架构师则涉及对工程架构和业务的把握。把AI技术高效落地应用,找到在当前算法中能够最大化满足约束条件,并最优地实现目标的方法,这是AI架构师的核心使命。

但遗憾的是,AI架构师的成长是一个漫长的过程。让做算法的人去了解业务架构,让做传统架构的人去把握AI技术,这需要工程师长时间的深度实践积累和技术抽象能力。

四大象限:找准AI架构师转型方向

在所有工程师中,研究算法出身的工程师和扎根工程技术出身的架构师,是最有可能转型成为AI架构师的两类人。他们有不同的侧重点,转型后具体又可以细分为四个方向可供大家参考:

1、算法出身转型为偏AI业务应用(偏业务策略)的AI架构师。他们有较强的AI技术背景,对业务的理解更深刻、与业务的结合更紧密;

2、算法出身转型为偏AI台工程架构的AI架构师。他们有较强的AI技术背景,工作职责相对前者偏台或中台,对业务的支持更广泛;

3、工程出身为转型偏AI业务应用(偏策略架构)的AI架构师。他们有传统架构师背景,工作职责贴业务且擅长从架构策略发挥 AI 作用;

4、工程出身转型为偏AI业务应用(偏工程架构)的AI架构师。他们依然有传统架构师背景,工作职责却更偏底层的工程架构设计与实现。

AI转型必看|算法工程师的AI启示录

算法工程师与传统架构师的转型之路存在各自的挑战,相比传统架构转型AI架构师而言,算法出身的工程师转型最大的瓶颈在于与业务的结合能力、对业务的理解能力和落实到工程实践中的经验积累。如果你想少走弯路,从算法工程师高效的转型成为AI架构师,下面的内容对你十分关键。

反复“锤炼” 升级AI实战能力

一般来说,算法工程师常常针对的任务都是抽象后的、环境变量相对固定,基于这些问题做模型算法层面的研究。对业务的理解能力和落实是需要到工程实践中去不断积累的。

算法思维是算法出身人的最大优势,因为基本功扎实,要注意的重点就在对业务理解和抽象层面上进行突破。只要工程能力没有太大的瓶颈,然后在实际项目中反复锤炼架构能力,和工程的架构的同学多配合提升综合素质,工程能力也很容易得到补足强化。

虽然这个转型的过程中会遇到很多丘陵和沟壑,但把时间维度拉长,当你从开始解决业务的某一个小问题到解决更大范围的业务问题,这是你为之付出所带来的成长。

AI转型必看|算法工程师的AI启示录

“握手”业务 找到AI最佳实践

很多算法出身的人,往往更关心和聚焦AI技术原理是什么、某个算法原理是什么,但随着工作的展开,关心和聚焦的方向就一点一点的变成算法的价值在哪里、算法能解决什么问题;到后来,你会发现把算法应用到真实的业务场景里,解决算法的瓶颈以及存在的其他问题才是关键。但这个过程其实是从算法到业务的一个融合与渐进的过程。

当你走AI架构师这扇门,你应该思考:如何站在业务系统的角度,找到业务最重要、最核心的问题?如何结合算法和工程经验,实现高效的AI业务系统?这些问题要求你不仅要掌握传统意义上的机器学或者深度学算法,还需要对整个行业的业务有充分的理解,只有这样才能设计出符合业务发展的AI系统。

有人曾片面地以为AI系统就是算法,但这是错误的认知。AI系统和算法差别非常大,AI系统是算法、工程架构、要解决的问题以及一系列的约束条件的集合体。从工程系统角度,AI台本身是一个技术型产品,算法是里面很关键的组成部分——但不是全部。AI架构师就是要在具体的业务场景中设计并实现相应算法的最佳实践。

“迭代”能力 提升自身AI实力

AI行业的快,让人超乎想象。前几年的热点还是“下围棋”类的单点技术,如今已经覆盖了衣食住行生活、商业的方方面面。AI发展的快,要求AI从业者的能力也要快速迭代,除了算法模型之外的关键能力,更要有诸如问题抽象、技术选型和技术实现的能力。

抛开建模问题去思考问题的核心,而不是先考虑建模问题。比如说风控问题,传统树可以做风控、深度学也可以做风控。但你要先把问题定义清楚,如何衡量贷款标准?如何确认贷款条件?以及需要哪些特征、哪些数据等等,思考完这些之后,你自然可以找到合适的模型。

AI时代已经到来将会有越来多的系统被AI自动化所取代。企业的竞争终究是人才的竞争,AI的竞争本质更是AI人才的竞争。只有找到合适的方向、明确职责定位、并为之努力,采取有效的学提升方案才能成为支撑企业的关键人才。

AICA|转型AI架构师的直通车

百度自2019年启动首席AI架构师培养计划(AICA)致力于为行业输送既能分析业务问题,又掌握模型算法,还能操刀落地应用,深谙算法与工程紧密结合的高端复合型AI领军人才。基于算法工程师转型AI架构师的瓶颈挑战与转型锚点路径,精准设置课程内容,覆盖:

1、提升技术视野,找准问题,看清方向

提升对于自身企业具体业务场景理解的定位和认知

2、AI转型升级的典型技术案例剖析

快速积累对整体业务、整个行业关键问题的深度抽象能力

3、模拟实战的问题拆解&解决方案

培养用最新AI思维、AI工具、方法和技术解决实际问题

4、百度科学家/AI专家一对一指导

百度众多深度学架构师、科学家面对面深度交流指导

AI转型必看|算法工程师的AI启示录

AICA半年学制,带你从业务驱动出发,恰当地做好业务与深度学技术、算法的对接。助你以最低成本、最高效率快速迭代AI能力,走出一条属于自己的AI最佳实践之路。

AICA 五期班招生中

线下闭门交流

1+1参与模式

AI思维风暴

限额50席

AI转型必看|算法工程师的AI启示录

如今,正是国家十四五规划的开局之年,以人工智能为代表的新一代信息技术,将成为我国“十四五"期间推动经济高质量发展、建设创新型国家,实现新型工业化、信息化、城镇化和农业现代化的重要技术保障和核心驱动力之一。

在当前国家宏观政策利好的时间窗口内,AI正在迎来新的机遇,作为算法工程师的你,准备好打开这扇门了么?


免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。